Observations from evaporation residue cross sections in ⁴⁵Sc- and ⁴⁴Ca-induced reactions

T.A. Werke, D.A. Mayorov, M.C. Alfonso, E.E. Tereshatov, and C.M. Folden III

Recent measurements of evaporation residue (EvR) cross sections [1-3] for nuclei near the N = 126 shell have emphasized the importance of collective enhancements to the level density (CELD) for spherical ground-state nuclei and may have relevance for new superheavy element (SHE) synthesis. The study of ⁴⁵Sc-induced reactions on lanthanide targets [3] revealed that proton evaporation competed effectively with neutron evaporation from the compound nuclei (CN) that were produced. The *xn* cross sections of ⁴⁵Sc-induced reactions were also three or more orders of magnitude smaller than cross sections of ⁴⁸Ca-induced reactions on the same targets due to the relative neutron deficiency of ⁴⁵Sc.

In the last year, we bombarded ^{156, 157}Gd targets with ⁴⁵Sc projectiles and ¹⁵⁸Gd, ¹⁵⁹Tb, and ¹⁶²Dy targets with ⁴⁴Ca projectiles as part of a systematic study to produce CN near the N = 126 shell. The beams of ⁴⁵Sc⁶⁺ and ⁴⁴Ca⁶⁺ were provided from the K500 cyclotron, and the unreacted beam and other unwanted reaction products were separated using the Momentum Achromat Recoil Spectrometer (MARS) [4]. Full experimental details are given in Refs. [1, 5].

Combined with previous results, reactions of ${}^{45}Sc + {}^{156\cdot158, 160}Gd$ have now been studied and 4n cross sections are shown in Fig. 1. As expected, the 4n cross sections decrease as the neutron number in the target decreases. As the CN become more neutron-deficient, the fission

FIG. 1. (a) 4n and (b) p3n cross sections for 45 Sc-induced reactions on ${}^{156-158, 160}$ Gd targets. Symbols indicate experimental data and solid lines indicate theoretical calculations.

barriers decrease and the neutron binding energies increase, leading to a higher probability of fission. ⁴⁴Ca is of interest because it is only one proton removed from ⁴⁵Sc (both are N = 24 nuclei). Cross sections for the reactions of ⁴⁴Ca on lanthanide targets are approximately two orders of magnitude larger than for reactions of ⁴⁵Sc on the same targets as shown in Fig. 2. The *pxn* cross sections in the ⁴⁴Ca-induced reactions are also larger than in the ⁴⁵Sc-induced reactions. This emphasizes the role of the extra proton in ⁴⁵Sc in creating much more fissile CN which have low survival probabilities. A simple theoretical model based on Ref. [6] was developed, and the inclusion of CELD was necessary to reproduce the experimental data. This may have implications for producing SHEs near the predicted N = 184 spherical closed shell, as CELD may negate any possible enhancement to the *xn* cross section as a result of producing CN on this shell.

FIG. 2. Comparison of 4n cross sections in ⁴⁴Ca-induced reactions (solid points) and ⁴⁵Sc-induced reactions (open points) on ¹⁵⁸Gd, ¹⁵⁹Tb, and ¹⁶²Dy targets. The cross-bombardment reactions ⁴⁸Ca+¹⁵⁴Gd (circles with diagonal lines) and ⁴⁴Ca + ¹⁵⁸Gd (solid circles) are very similar.

Two reactions with ⁴⁴Ca projectiles were cross bombardments for reactions that had been previously studied using either ⁴⁸Ca or ⁴⁵Sc projectiles. Cross sections for the 4*n* EvR of the ⁴⁸Ca + ¹⁵⁴Gd and ⁴⁴Ca + ¹⁵⁸Gd reactions which produced the ²⁰²Po CN are very similar (see Fig. 2). However, the maximum 4*n* EvR cross section of the ⁴⁴Ca + ¹⁵⁹Tb reaction which produced the ²⁰³At CN is approximately an order of magnitude larger than in the ⁴⁵Sc +¹⁵⁸Sc reaction which produced the same CN. Some of this discrepancy should be accounted for by differences in the fusion probability, but we cannot rule out other effects such as pre-equilibrium emission playing a role [7].

These data demonstrate that the production of neutron-deficient heavy nuclei using ⁴⁴Ca and ⁴⁵Sc projectiles is relatively difficult compared to similar reactions using ⁴⁸Ca projectiles reacting with the same targets.

- D.A. Mayorov, T.A. Werke, M.C. Alfonso, M.E. Bennett, and C.M. Folden III, Phys. Rev. C 90, 024602 (2014).
- [2] D.A. Mayorov, T.A. Werke, M.C. Alfonso, E.E. Tereshatov, M.E. Bennett, M.M. Frey, and C.M. Folden III, Phys. Rev. C (submitted).
- [3] T.A. Werke, D.A. Mayorov, M.C. Alfonso, M.E. Bennett, M.J. DeVanzo, M.M. Frey, E.E. Tereshatov, and C.M. Folden III, Phys. Rev. C (submitted).

[4] R.E. Tribble, R.H. Burch, and C.A. Gagliardi, Nucl. Instrum. Methods. Phys. Res. A285, 441 (1989).

- [5] C.M. Folden III et al., Nucl. Instrum. Methods. Phys. Res. A678, 1 (2012).
- [6] K. Siwek-Wilczyńska, I. Skwira, and J. Wilczyński, Phys. Rev. C 72, 034605 (2005).
- [7] M.K. Sharma et al., Phys. Rev. C 91, 014603 (2015).